
Grid-Interop Forum 2012 1

The Critical Next Step for Interoperability:

Designing and Implementing Interfaces between Standards

Gary McNaughton

Cornice Engineering

Flagstaff, AZ 86001, USA

gmcnaughton@CorniceEngineering.

com

Linda Rankin

QualityLogic

Portland, OR 97205, USA

lrankin@qualitylogic.com

James Mater

QualityLogic

Portland, OR, 97229, USA

jmater@qualitylogic.com

Keywords: Interoperability, Inter-standard mapping,

MultiSpeak®, OpenADR, smart grid standards

Abstract

While conformance and interoperability of products

adhering to a specific standard is a critical building block

for smart grid systems, it is likely that deployment will

require interfaces between products adhering to two or more

standards. How such inter-standard interfaces are evaluated

and the steps to ensure a standardized inter-standard

interface is the subject of this paper. A recent project by the

MultiSpeak
®
 Initiative mapped the use cases and associated

functions between the MultiSpeak [1] and OpenADR 2

(Open Automated Demand Response) standards based on

business processes [3]
1
. The project identified overlaps and

gaps in the targeted functions and provides a guide for

developers who are required to include such interfaces in

their system implementations.

The development of the methodology used to map the

demand response functions between two standards is

consistent with other industry mapping efforts and

contributes to the general methodology for undertaking such

inter-standard interface analyses. This paper describes the

methodology in depth, demonstrating its application and

positive results.

1
 This material is based upon work supported by the Department

of Energy under Award Number

 DE-OE0000222. This report was prepared as an account of work

sponsored by an agency of the United States Government. Neither

the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not

infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States

Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or reflect those of

the United States Government or any agency thereof

An important result of this work is the knowledge that the

functions, methods and data objects contained in

MultiSpeak Version 4.1.5 are sufficient to send demand

response and critical peak price events to an interface that

implements the OpenADR 2.0a profile.

1. BACKGROUND

The MultiSpeak standard is an initiative of the National

Rural Electric Cooperative Association (NRECA) that

standardizes interfaces between enterprise applications

commonly used in electric power utilities for distribution

management. The OpenADR 2 standard was developed to

facilitate automated demand response actions at the

customer location including load shedding or load

shifting. Management of electric load can be used to

improve grid reliability and assist in the integration of

renewable electricity generation sources (such as wind

power). MultiSpeak provides standardized interfaces for

load management applications within the utility domain;

OpenADR 2 provides the methods and services for the

utility to manage load in the consumer domain.

The starting point for the methodology is the understanding

of each of the standards to a depth that permits appropriate

business cases to be identified for mapping of the functions

and data elements.

1.1. MultiSpeak Overview

In order to accomplish the exchange of data among

enterprise application software commonly applied within

utilities, the MultiSpeak Specification standardizes the

interfaces between abstract software functions. These

functions can then be combined to create various enterprise

software applications. The MultiSpeak specification

provides:

 Definitions of common data semantics. In

MultiSpeak, data semantics are documented in the

form of an extensible markup language (XML)

schema.

 Definitions of message structure (syntax). In

MultiSpeak Version 4.1, the XML-formatted data

payload is carried as part of a web services call for

mailto:gmcnaughton@CorniceEngineering.com
mailto:gmcnaughton@CorniceEngineering.com
mailto:donny.helm@oncor.com
mailto:jmater@qualitylogic.com

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 2

real time exchanges and as part of a batch file for

off-line transfers. MultiSpeak messages consist of

one or more of the following three parts: (i) one or

more defined data objects (considered to be nouns),

(ii) actions to be taken on those data objects (called

data object verbs), and (iii) messaging components.

 Definition of which messages are required to

support specific business process steps. Web

services method calls are linked together to

accomplish each potential step in a utility business

process.

The MultiSpeak Specification in total consists of (i) a data

model documented in Unified Modeling Language (UML)

class model and Extensible Markup Language (XML)

schema formats which includes data objects, interface

definitions, and message structures, (ii) service definitions

defined in Web Services Description Language (WSDL)

contracts, (iii) schema documentation in hypertext markup

language format which describes the schema, (iv)

implementation guidelines documents, (v) use cases

describing business processes addressed by MultiSpeak, and

(vi) a specification document.

Figure 1 MultiSpeak Version 4.1.5 Reference

Architecture showing supported abstract software

functions.

Any given piece of application software can implement one

or more of the abstract functions shown in Figure 1 as

appropriate. In some cases, such as a geographic

information system (GIS), the application likely would

implement only a single function, the GIS server. In other

cases, an enterprise application might implement many

abstract functional capabilities. For instance, an AMI system

would implement a meter reading (MR) server and might

also implement connect/disconnect (CD), outage detection

(OD), demand response (DR), home area network

communications (HAN), distribution automation (DA),

and/or prepaid metering (PPM) servers.

Note that each physical software application, for instance

AMI, would be a single actor, despite the fact that it might

implement one or more abstract MultiSpeak software

functions when represented in the MultiSpeak enterprise

service bus representation.

Each of the software functions of an application is

physically implemented using a Web service endpoint that

uses the MultiSpeak-defined data objects and service

definitions along with Web standards and protocols. Thus, a

single application might implement one or more distinct

Web service endpoints. This approach facilitates modular

development. Each version of MultiSpeak is deployed in its

own namespace, making it possible for a single application

to implement interfaces that support a number of different

versions of MultiSpeak.

Figure 1 shows the abstract representation of application

interconnectivity, labeled “MultiSpeak Web Services Bus.”
Physical implementations at a utility could be simply point-

to-point interconnections between Web service endpoints, or

could be a more complex middleware implementation such

as an enterprise service bus, depending on the needs of each

utility. If an application exposes a web service, it is

available for any other application in the enterprise network

to use. This provides much flexibility in adding applications

that may be required for mapping from MultiSpeak to

different standards and their associated protocols.

Finally, it is important to note that each of these functions

might be instantiated by one or more applications in the

enterprise. For instance, messages might be generated from

a customer billing application, a critical peak alerting

system, or another system seeking to get information to the

customer. Each such system would need to exhibit the same

services. As a result, abstract functional definitions have

been developed that can be concretely implemented in

numerous systems at the software design phase.

In addition to the methods defined specifically for each

function, several generic web service methods are defined

and are used for network management and discovery. For

example GetMethods allows for an application to query

another application’s web service to obtain a list of
MultiSpeak-compliant methods that it supports.

1.2. OpenADR Overview

OpenADR is an application layer message exchange

specification used for two-way communication of Demand

Response (DR), price, and Distributed Energy Resource

(DER) signals between the electricity service provider and

its customers. The OpenADR Alliance is developing a

number of profile subsets of the OASIS Energy

Interoperability 1.0 standard; the first of these subsets is

OpenADR 2.0a. This standard provides an open,

standardized DR interface that allows communication of DR

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 3

signals using a common XML-based payload on existing

communication infrastructure, such as the internet. The

OpenADR 2.0 standard is based on other Smart Grid

standards:

 OASIS Energy Interoperability v1.0

 OASIS Energy Market Information Exchange v1.0

 OASIS WS-Calendar v1.0

 IEC Common Information Model

In the Service Provider/Aggregator domain where

OpenADR is deployed
2
, there are two main entity types that

a particular device can represent: a Virtual Top Node (VTN)

that can initiate a DR event, or a Virtual End Node (VEN)

that can participate in a DR event. Generally in an

interaction, the VTN acts as the server, providing

information to the VEN, which in turn responds to the

information. The response may be to reduce power to some

devices, or it could also propagate the signal further

downstream to other VENs. In this case, the VEN would

become the VTN for the new interaction. OpenADR 2.0

allows for interconnection of these types of nodes in a

connected network, but communication is always between

VTNs and VENs (peer-to-peer communication is not

supported).

Figure 2 Conceptual Diagram of VEN/VTN node

topology illustrating VEN/VTN relationships.

Communication between the VEN/VTN uses standard

internet protocols such as HTTP, and a common data model

is described using XML schema. The VTN can be a service

provider such as a utility, and the VEN could be a gateway

to a HAN or Energy Management Control System.

OpenADR was initially developed to reduce peak loads in

response to “event-based” signals. This Demand Response

2
 This is referred to as the OpenADR domain in the

remainder of this paper.

(DR) goal is represented by the “simple” or “OpenADR
2.0a” profile that is targeted towards low power devices.
Extensions to the standard to support more robust devices

and the wholesale space (ISOs) will result in “2.0b” profile.

The OpenADR 2.0 profiles are a subset of the OASIS

Energy Interoperability Standard.

It should be noted that OpenADR was originally designed

considering building HVAC and lighting controls. As a

result OpenADR assumed an intelligent energy controller

(energy management system) would be present and would

allow, for example, for ramp-up/ramp-down capability in

demand response profiles. In contrast neither MultiSpeak

(nor the ZigBee Smart Energy Profile (SEP)) take this

requirement into account, and both make the assumption

that demand-responsive loads are on/off loads with limited

local intelligent control in place. In the case of HVAC loads,

for example, demand response in SEP and MultiSpeak are

of the type “set the thermostat back 10 degrees” rather than
“go to load profile ABC”.

2. METHODOLOGY

The focus of the project was to develop a comprehensive

mapping between the MultiSpeak Version 4.1.5

Specification and OpenADR (Open Automated Demand

Response) 2.0a. The mapping of functions was developed

by:

 Identifying the common business processes

supported by MultiSpeak and OpenADR.

 Specifying the use cases needed to achieve the

goals of these business processes.

 Identifying the available MultiSpeak messages and

payloads for those messages to provide the data

exchanges needed by OpenADR-enabled

applications.

 Identifying the corresponding OpenADR services

and payloads.

 Identifying the overlaps and gaps in the

functionality between MultiSpeak and OpenADR.

The analysis was based on the following assumptions:

 An adaptor application, DRMS, maintains state

regarding the active and pending events for the

OpenADR domain. This state is updated and

managed through the MultiSpeak methods for

initiating and cancelling events. The DRMS, for

example, may be an OpenADR application that has

implemented an interface to MultiSpeak compliant

applications.

 The events originate in the MultiSpeak domain and

that the DRMS will operate as a VTN for the

downstream traffic.

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 4

Mapping of functions and data flows show how both the

Initiate and Cancel methods of MultiSpeak for demand

response and critical peak price events can be mapped to

corresponding request/response flows in OpenADR. Flows

for both the OpenADR PUSH and PULL methods were

developed.

3. DETAILED METHODOLOGY

The following sections of this paper detail the methodology

used and demonstrate its application to the MultiSpeak-

OpenADR interface.

3.1. Business Processes

The mapping of MultiSpeak to OpenADR is based on

identifying the end-to-end business processes supported by

the functionality of both standards. Business processes can

then be further expanded to individual flows or use cases

that are needed to implement them.

MultiSpeak provides standardized interfaces for load

management applications within the utility enterprise (both

distribution utilities and vertically integrated utilities);

OpenADR provides the methods and services for the utility

to manage consumer loads for integration of renewable

energy, grid reliability and energy savings. In this mapping

project, the utility business processes that would be enabled

by systems where OpenADR is deployed are:

1. The utility manages its demand response resources

by distributing events to customers with responsive

assets. Customers may choose to participate in one

or more events.

2. The utility distributes/updates critical peak price

events to customers enrolled in a program.

Customers may choose to participate in one or

more events.

3.1.1. Actors and Domains

Actors and domains are abstractions that are used to

illustrate the business process use cases. The eventual

implementation may vary, although the flow of data is

expected to be the same.

MultiSpeak is used within the utility enterprise as a means

to standardize the interface between utility enterprise

applications. OpenADR is a protocol that is used to

communicate demand response events between the utility

and the customer. As such, each standard is used to interface

to different applications in a separate operational domain. In

the MultiSpeak domain, the actor selected for these

examples is a demand management application that is

responsible for managing the demand response programs

within the utility.

The actor in the OpenADR domain would be a system that

presents a VEN interface to the utility. This application may

be one implemented by an aggregator (that in turn manages

downstream events as a VTN), or it may be the application

used by a gateway to a Home Area Network (HAN) or an

Energy Management Control System. This actor is the

OpenADR client, or VEN, and is completely contained

within the OpenADR domain.

To bridge between the two domains, a third actor needs to

be introduced; an adaptor application called the Demand

Response Management System (DRMS). This application

interfaces to the demand management application in the

MultiSpeak domain, and then acts as a VTN in the

OpenADR domain. This actor contains all of the

communication and transport layer functionality to manage

each interface independently as well as the ability to

transform the data and information from MultiSpeak to

OpenADR (and vice versa).

Figure 3 provides a schematic representation of the actors

and domains of interest.

It is also assumed that the DRMS maintains the state

information needed in order to map the services and

functionality from one domain to the other. For example, in

the MultiSpeak domain, demand response events are

initiated or canceled. In the OpenADR domain, once an

event has been created, it remains active or pending until it

has expired or it is canceled. The DRMS/VTN is the entity

that maintains relevant state information regarding events in

both domains as well as performing the logical translation

between the two.

This model assumes that events originate in the MultiSpeak

domain, and that the utility is not acting as an OpenADR

aggregator and receiving events from an upstream VTN.

This is consistent with the usage model for the OpenADR

2.0a profile.

Figure 3 MultiSpeak/OpenADR domains and primary

actors

To summarize, the analysis is based on the following

assumptions:

 An adaptor application, DRMS, maintains state

information regarding the active and pending

events for the OpenADR domain. This state is

Internet

OpenADR Domain

Utility Operations

MultiSpeak Domain

Demand

Management

Demand Response

Management System/

VTNEnterprise network
VEN Client

Internet

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 5

updated and managed through the MultiSpeak

methods for initiating and canceling events. The

DRMS, for example, may be an OpenADR

application that has implemented an interface to

MultiSpeak compliant applications.

 The events originate in the MultiSpeak domain and

the DRMS will operate as a VTN for the

downstream traffic.

The challenge then is to ensure that MultiSpeak contains

sufficient capability to provide the data required by

OpenADR-enabled applications to implement their desired

functionality.

3.2. Use Cases and Sequence Diagrams

For each business process a set of use cases and their

corresponding sequence diagrams have been developed to

illustrate the operations and transfer of information between

each of the actors in each domain. Along with the mapping

of business processes to use cases, the MultiSpeak methods

and objects and OpenADR services and payloads that would

be used in implementing the use case were developed.

These provide the framework for the flow diagrams along

with the XML mapping tables for each of the use cases.

More tables and detail is provided in the QualityLogic

report published by the MultiSpeak Initiative [3]. The

Report includes:

 Sequence diagrams for the use cases that show the

flow of information and data from one domain to

the other.

 For each object used in the flows, an XML

mapping between the elements of one domain to

the other is shown. The criterion for mapping an

object is if the information in the payload is

relevant to the functionality being performed in the

domain being mapped. For example, a mapping of

the oadrRequest event payload to a MultiSpeak

object was not required because it is handled solely

by the VTN and does not require information or

data to be exchanged directly with an application in

the MultiSpeak domain.

 XML diagrams showing the OpenADR objects that

are being mapped to are in Appendix A, and the

MultiSpeak objects are shown in Appendix B of

the report.

3.2.1. Use Cases

In the investigation of the two business processes that are

facilitated by mapping of MultiSpeak to OpenADR, the

following Use Cases were identified for each:

Utility manages demand response event to customer

demand response resource(s).

 Utility issues demand response event to customer

demand response resource(s) (PUSH Method)

 Utility cancels active or future demand response

event (PUSH Method)

 Utility modifies demand response event (PUSH

Method)

 VEN requests list of active events (PULL model)

The utility manages price signals to customers, who decide

how to respond using their demand resources.

 Utility issues critical peak price event (PUSH

Method)

 Utility cancels active or future critical peak price

event (PUSH Method)

 Utility modifies critical peak price event (PUSH

Method)

 VEN requests list of active events (PULL model)

3.2.2. Messages, Objects, Services and Payloads

For each use case, the specific MultiSpeak messages and

OpenADR services used to implement the needed

functionality in each domain have been identified.

For example, in the use case where the utility issues

a demand response event to a customer, a

DemandResponseNotification message originates in the

MultiSpeak domain, and is transformed into a

corresponding oadrDistributeEvent message using the

EiEvent service in the OpenADR domain. The information

that is exchanged between the two domains is also

determined by the MultiSpeak objects used in the messages,

and the OpenADR payloads. For instance, the MultiSpeak

messages/objects and OpenADR services/payloads for the

use case

“Utility issues demand response event to customer demand

response resource(s) (PUSH Method)” are:

 MultiSpeak Message:

DemandResponseEventNotification;

InitiateDemandResponseEvent;

InitiateDemandResponseEventToGroup

 MultiSpeak Object used in the Message Payload:

demandResponseEvent;

demandResponseEventStatus

 OpenADR Service: EiEvent

 OpenADR Payload: oadrDistributeEvent;

oadrCreatedEvent

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 6

Similar Messages, Objects, Services and Payloads have

been identified for the other use cases.

3.2.3. Mappings of Data Elements

The next step was to develop mapping tables between the

XML data elements of the MultiSpeak objects and

OpenADR payloads. Mapping from one standard to another

is not always direct, and a set of mapping descriptors were

defined for the tables. The following mapping terms were

defined:

- Direct: A mapping can be done directly from one

schema element to the other. A transformation from one

format to another may need to be performed (i.e.,

integer versus floating point).

- Derived: The value or content of the destination

element can be derived from other information, such as

the function name, other elements, etc. Examples of

recommended values or algorithms may be provided.

- NA: The element being mapped is specific to the

standard, such as protocols used in services for tracking

messages, or does not apply to the specific use case.

- Computed: The data element can be computed

(elements such as timestamps would fall under this

category). UsageGap: Required to implement the

functionality in the standard that is being mapped if it is

not directly available and cannot be computed or

derived.

- ExtGap: The standard being mapped has additional

features that are not currently supported by MultiSpeak

usage models or data objects and cannot be computed

or derived.

As a result, the mapping table analysis shows how elements

are mapped, along with identifying current gaps in data

content or areas of future development.

For instance, in the mapping of DemandResponseEvent to

oadrDistributeEvent.oadrEvent.eiEvent.eventDescriptor, the

<objectID> element in the MultiSpeak message could be

used directly for the <eventID> in the OpenADR

eventDescriptor. In the mapping table, the mapping field for

these elements would indicate “Direct”.

As another example, the OpenADR <eventStatus> is used to

indicate if the event is far, near, active or canceled. In the

mapping table, this element is derived from the MultiSpeak

element <eventStartTime>, and if the MultiSpeak message

is used for initiating or canceling an event. In this case, the

mapping is “derived” and the algorithm is described.

4. GAP ANALYSIS

There are two ways to categorize gaps in this analysis. The

first is identifying those gaps where existing MultiSpeak

methods and data objects are not sufficient in providing the

information such that the same functionality can be

supported using OpenADR. These are called Usage Gaps.

The second set of gaps are those that have been identified

when the objective is to determine if OpenADR has

additional functionality or content that would be of value to

import to MultiSpeak. Addressing this set of gaps would

provide the functionality such that MultiSpeak could

support the full range of capabilities in OpenADR. These

are called Extension Gaps.

Usage Gaps

The functions, methods and data objects in MultiSpeak

Version 4.1.5 are sufficient in sending demand response and

critical peak price events to an interface that implements the

OpenADR 2.0a profile. No critical usage gaps were

identified. However, some of the elements that are present

in the MultiSpeak demand response event object have no

counterpart in OpenADR.

Extension Gaps

There were several extension gaps identified in the mapping

of the MultiSpeak data objects and functions to the

OpenADR eiEvent services.

OpenADR supports the ability to “modify” events.
MultiSpeak currently only supports the verbs of “Initiate”
and “Cancel” for the operations on the data objects. A flow
was described that allows for modification of events using

the capabilities present in MultiSpeak Version 4.1.5.

OpenADR event signals support more than one interval.

This allows more control points over the load. For example,

a price signal may have three intervals, one where the value

is low, medium and then high. The current definition of DR

and critical peak price events in MultiSpeak are limited to

one interval and therefore one value over the duration of the

event.

OpenADR eiEvent includes attributes that define

notification duration; ramp-up and recovery times for the

event for examples as to how they relate to the event. These

periods do not exist in the MultiSpeak event objects.

A critical peak price event by definition implies that the

price for the event is at the highest level. The EiEvent

<signalPayload> attribute allows for events to have 4 values

(normal, moderate, high or special). The event objects in

MultiSpeak do not provide for representing other values for

price besides “peak”.

5. SUMMARY AND CONCLUSIONS

The mapping of functions between the MultiSpeak and

OpenADR 2 standards are analyzed and presented using a

use case methodology based on business processes. Use

cases and their corresponding sequence diagrams provide a

 McNaughton, Rankin and Mater

Grid-Interop Forum 2012 7

means to represent detailed and complex flows required to

implement a specific business process. Where gaps in

MultiSpeak coverage are identified, they are documented

for future action. The result is that a comprehensive

description of how MultiSpeak maps to OpenADR 2 as well

as a quick reference and guide to the relevant MultiSpeak

methods within the MultiSpeak specification are now

available to developers and system implementers.

The results of this work indicate that the functions, methods

and data objects contained in MultiSpeak Version 4.1.5 are

sufficient to send demand response and critical peak price

events to an interface that implements the OpenADR 2.0a

profile. No critical usage gaps (gaps where a particular

OpenADR functionality cannot be supported by

MultiSpeak) were identified. Two minor usage gaps and

several extension gaps (capabilities in OpenADR that would

enrich MultiSpeak if introduced into the MultiSpeak

specification) were noted. It was determined that both the

minor usage gaps and all extension gaps can be handled

through the use of existing extension mechanisms in

MultiSpeak Version 4.1.5 and dealt with by minor changes

to the functionality of MultiSpeak in future Versions.

The methodology developed for this project can serve as a

model for other mapping efforts.

5.1. References

 [1]. Additional information about the MultiSpeak

Initiative and Specification is available at

http://www.multispeak.org.

[2] Additional information about OpenADR is available at

http://www.openadr.org/.

[3] “Function and Data Mapping: MultiSpeak
®
 and

OpenADR 2.0”, DRAFT, Version 1.0, September 24, 2012,
prepared by QualityLogic for NRECA CRN Smart Grid

Regional Demonstration Project and National Rural Electric

Cooperative Association.

6. BIOGRAPHY

 Gary A. McNaughton is the Vice

President and Principal Engineer for

Cornice Engineering, Inc. He received a

B.S.E.E. degree from Kansas State

University in 1976 and an M.S.E.E. degree

from the University of Colorado in 1980.

Prior to joining Cornice in 1995 he worked

as a Plant Electrical Engineer for Union Carbide, at the Oak

Ridge Gaseous Diffusion Plant, at Oak Ridge, TN, as a

Transmission Planning and Protection Engineer for

Colorado-Ute Electric Association, a generation and

transmission cooperative, located in Montrose, CO, and as

Staff Engineer, Manager of Engineering, and Assistant

General Manager for Engineering and Operations for La

Plata Electric Association, in Durango, CO. Mr.

McNaughton currently serves as the Technical Coordinator

for NRECA’s MultiSpeak® Initiative. Mr. McNaughton is

a registered professional engineer in the States of Colorado

and Arizona.

James Mater founded and has held several

executive positions at QualityLogic Inc.

from June 1994 to present. He is currently

Co-Founder and General Manager, Smart

Grid, working on QualityLogic's Smart Grid

strategy, including work with GWAC, the

Pacific Northwest Smart Grid Demonstration

Project, and giving papers and presentations on

interoperability. From 2001 to October, 2008, James

oversaw the company as President and CEO. From 1994 to

1999 he founded and built Revision Labs which was merged

with Genoa Technologies in 1999 to become QualityLogic.

Prior to QualityLogic, James held Product Management

roles at Tektronix, Floating Point Systems, Sidereal and

Solar Division of International Harvester. He is a graduate

of Reed College and Wharton School, University of

Pennsylvania.

Linda Rankin is a Senior Test Architect for

QualityLogic and is the Company’s

technical lead for the Pacific NW Smart

Grid Demonstration Project. She has been

an Assistant Professor and Research

Scientist at Maseeh College of Engineering

and Computer Science of Portland State University,

teaching and developing curricula pertaining to Smart Grid

digital technologies. Until 2008, she was a Principal

Engineer at Intel Corporation and has more than 20 years

experience as a system architect working applied research

and advanced product development in the areas of

networking, parallel processing, server platforms, and

microprocessors. She is a graduate Lewis & Clark College,

and Oregon Graduate Institute. Linda has authored papers

for technical journals, is a Senior member of IEEE, and

holds more than 25 patents or pending patents, many of

which are international.

