Comparison of MultiSpeak[®] Connectivity Model and the IEC CIM NetworkDataSet

Gary A. McNaughton Cornice Engineering, Inc.

The Leading Annual T&D Event

Outline

- Background on MultiSpeak[®] and CIM
- Why MultiSpeak and CIM should be harmonized
- How harmonization can occur
- MultiSpeak and CIM power system data models

Standards for Integration of Distribution Applications

MultiSpeak

- Developed by NRECA in collaboration with key industry vendors
- Covers applications of interest to distribution utilities; currently doesn't include power scheduling or generation
- Standard is mature, but scope is continuing to grow
- In use at over 200 utilities
- Mature interoperability testing program, applies to all interfaces
- Uses XML; web services and batch transport profiles defined
- More information and specification available at <u>www.MultiSpeak.org</u>

Standards for Integration of Distribution Applications CIM with Distribution Extensions

- Maintained by IEC Technical Committee 57
- Scope is larger than MultiSpeak, but is less mature
- Implementations based on CIM data model in place at dozens of utilities
- Implementation is messaging-based and transport agnostic, currently no transport profiles defined
- Interoperability testing is in place for two limited profiles (transmission and distribution power system model exchange)
- Core CIM in IEC 61970; distribution extensions in IEC 61968

MultiSpeak Services Bus Architecture

Outage Handling Example - Bus Architecture

Why Harmonize MultiSpeak and CIM?

- Both standards have value and likely will coexist in market
- Both standards will undoubtedly be simultaneously implemented in some utilities
- Inter-company messaging will likely be required among companies using different standards

Steps in Harmonization

- Map MultiSpeak web service methods to WG14 CIM messages (use case steps).
- 2. Compare WG14 and MultiSpeak data payloads for each use case step.
- 3. Create electronic data payload transformation.
- 4. Create adapter layer to handle data transformation and messaging conversion.

Harmonization Example

- 1. Map MultiSpeak web service **methods** to WG14 CIM **messages**. Choose network connectivity
- 2. Compare WG14 and MultiSpeak data payloads for each use case step.
- 3. Create electronic data payload transformation.
- 4. Create adapter layer to handle data transformation and messaging conversion.

Harmonization Example

- 1. Map MultiSpeak web service **methods** to WG14 CIM **messages**.
- Compare WG14 and MultiSpeak data payloads for each use case step. Compare MultiSpeak Connectivity and CIM NetworkDataSet payloads
- 3. Create electronic data payload transformation.
- 4. Create adapter layer to handle data transformation and messaging conversion.

Sample Distribution Circuit

The Leading Annual T&D Event

Basic Differences

- MultiSpeak can handle section-oriented or node oriented models; CIM uses nodes.
- CIM can have terminals associated with nodes; MultiSpeak does not have terminals.
- MultiSpeak does not explicitly model ground.
 - One terminal devices have an implied ground.
 - Three terminal devices are modeled with two terminals and implied ground.

MultiSpeak and CIM Equivalence

Power System Element		MultiSpeak Object	NetworkDataSet Object
1)	Equivalent source	Included in Substation object.	EnergySource
2)	Power transformer	TransformerBank (containing one or more	PowerTransformer (containing two or more
		Transformer units)	Windings)
3)	Voltage regulator	Regulator	Modeled as a PowerTransformer with a
			TapChanger and RegulationSchedule.
4)	Breaker	OvercurrentDeviceBank (containing	Breaker
		breaker object(s))	
5)	Recloser	Recloser	Modeled as a Breaker with RecloserProperties.
6)	Switch	SwitchDeviceBank (containing Switch	Switch
Ĺ		units).	
7)	Shunt capacitor bank	CapacitorBank	ShuntCompensator
8)	Ground	Assumed to be part of CapacitorBank.	Ground
9)	Fuse	OvercurrentDeviceBank with (Fuse	Fuse
		objects)	
10)	Single phase	ohPrimaryLine or ugPrimaryLine as	ACLineSegment
	distribution line	appropriate.	
11)	Distribution	TransformerBank (containing one or more	PowerTransformer (containing two or more
	transformer	Transformer units).	Windings)
12)	Customer service	ServiceLocation	ServiceDelivervPoint
	location		
12)		Cubatation	Substation
13)	Substation		Substation
14)	Three phase	FeederObject in substation. Upon leaving	Circuit in substation. Upon leaving the substation,
	distribution feeder	the substation, the line is modeled as a set	the line is modeled as a set of ACLineSegments (also
		of ohPrimaryLine or ugPrimayLine	called CircuitSections) between connectivity nodes.
		objects which model line sections between	
		connectivity nodes.	

Fuse Equivalence – Peeling the Onion

- 1. CIM Fuse contains more than MultiSpeak fuse
 - Equivalent is MultiSpeak overcurrentDeviceBank containing fuse units.
- 2. MultiSpeak overcurrentDeviceBank contains more than a CIM Fuse
 - Missing parts are in SwitchProperties child of the Fuse.
- 3. CIM Fuse w/ SwitchProperties has more than MultiSpeak OCD w/ fuses
 - Missing parts are in **eaEquipment** catalog

Steps in Harmonization

- 1. Map MultiSpeak web service **methods** to WG14 CIM **messages** (use case steps).
- 2. Compare WG14 and MultiSpeak data payloads for each use case step.
- 3. Create electronic data payload transformation.
- 4. Create adapter layer to handle data transformation and messaging conversion.

Steps in Harmonization

- 1. Map MultiSpeak web service **methods** to WG14 CIM **messages** (use case steps).
- 2. Compare WG14 and MultiSpeak data payloads for each use case step.
- 3. Create style sheet data payload transformation.
- 4. Create adapter layer to handle data transformation and messaging conversion.

Conclusions

- CIM and MultiSpeak are both complete, consistent data models for distribution modeling
- There are stylistic differences reflecting the needs and perspectives of the modelers
- The models are symantically and topologically equivalent
- It is possible to electronically convert payloads between the data models
- The two data models can co-exist if desirable

For More Information

Technical Contact:

Gary A. McNaughton

Cornice Engineering, Inc.

P.O. Box 2350

Pagosa Springs, CO 81147

Phone: (970) 731-1508

gmcnaughton@corniceengineering.com

Program Contact:

Bob Saint

NRECA

4301 Wilson Blvd.

Arlington, VA 22203

(703) 907-5863

Robert.Saint@nreca.coop

www.MultiSpeak.org

The Leading Annual T&D Event