Fa
MILSOFT 5 -
Utility Solutions Geo;;?tal

& BETTER POINT OF VIEW

MultiSpeak Version 3.0 Interoperability Assertion

Statement of Interoperable Functionality Between:

Vendors Products Product | Role | Web Client Web Server Interfaces
Version Interfaces
Milsoft Utility Milsoft Integration | 8.1 GIS GIS->STK_Server | STK->GIS_Server
Solutions, Inc. Server EA EA->STK_Server STK—>EA_Server
Milsoft DisSPatch
Outage
Management
System
GeoDigital WorkStudio 8.2 STK STK—>GIS_Server GIS->STK_Server
International StakeOut STK—>EA_Server EA->STK_Server
Summary:

Milsoft’s GIS and Engineering products are capable of receiving staked work order data from
GeoDigital’s WorkStudio StakeOut application using MultiSpeak Web Services. GeoDigital’s WorkStudio
performs the task of creating a work order with detailed design data based on construction unit
standards, existing GIS feature data, ancillary facility data and spatial drafting tools. The Milsoft
Integration Server accepts staked work orders in either the designed state or the as-built state and
creates a project within the Milsoft data model for the work order. It then generates Milsoft model
changes according to the design defined in the work order. This project is then shared with DisSPatch
Outage, Milsoft Map and Milsoft EA as a project using Milsoft’s shared data bus for Engineering and
Operations (E&O).

Since the Field Design is considered as the “System of Record” for field-designed Work Orders, any work
order change notifications sent to Milsoft is overwritten with the latest subsequent updates from
WorkStudio.

Milsoft’s Project Management system creates a Project using the work order number from WorkStudio.
In the event that a Milsoft or Milsoft Map client user is performing edits on the same specific project
work order that WorkStudio resends, Milsoft will create another project with the same work order
number followed by a revision digit number. This is done to prevent reconciliation issues.

Page 1 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Prerequisites:

The Milsoft Integration Server must be accessible to WorkStudio as a resolvable URL and configured in
WorkStudio Server with the proper URL, username, and password.

The workOrder payload object can contain a very large amount and a very large variety of different
objects. How this data is generated is highly configurable within the StakeOut application, which can be
used to tailor the data transfer on an individual system installation basis. See the “Configuration
Considerations” section below for details.

Certain codes are used to identify specific items such as transformers, conductors, etc. and both systems
must be configured with the same set of identity codes.

Specific Vendor Assertions:

1) The WorkStudio Server will send WorkOrders to the Milsoft Integration Server for GIS, EA & OMS.

Importance to user: A design in WorkStudio that details out the changes to be made or were made to
an electrical distribution network can be sent to the GIS, EA and OMS systems, so that those systems can
properly reflect the distribution circuit changes without having to manually draft/edit the electrical
model changes in those systems.

How Achieved: Within WorkStudio, either an automation or an action is configured to send the
MultiSpeak workOrder object to the Milsoft Integration Server. Once the export is initiated, WorkStudio
will first call the GetMethods method so that it can discover which methods the receiver can support.
For this interface, the MultiSpeak method names can be different depending on whether the receiver
used the buss-based MultiSpeak WSDLs or the point-to-point-based MultiSpeak WSDLs. As long as the
receiver responds with either the WorkOrderChangeNotification or the
WorkOrderChangedNotificationToGIS method names, then WorkStudio will send the workOrder using
the discovered method.

These events are either initiated from a user selecting a work order and clicking a button from the user
interface, or automatically by an automation event configured in the WorkStudio workflow engine.
These events can be executed either from within WorkStudio Editor or within WorkStudio Server, as the
executable is the same in either case. However, the URL of the Milsoft Integration Server must be
accessible from the process that is calling the Web Service.

Page 2 of 33

-
i —
M SOFLS GeoDgttal ...
Products: Milsoft Integration Server and GeoDigital WorkStudio StakeOut
Summary of Interoperability Test Results
STK->GIS
Table 1
Recommended MultiSpeak Methods
Method Name Importance to User Supported Supported Verified
by Server' by Client’ Inter-
(GIS and EA) (STK) operable3

PingURL Is used to discover if the client can successfully communicate with X X X

the server, usually during configuration.
GetMethods Requests the method names served by the server. Is used by X X X

StakeOut to discover if the server supports the

WorkOrderChangedNotificationToGIS method or the

WorkOrderChangedNotification method.
WorkOrderChangedNotificationToGIS This method call will pass an entire list of WorkOrder objects from X

the staking system to the GIS system. This method is defined by

the point-to-point WSDL.
WorkOrderChangedNotification This method call will pass an entire list of WorkOrder objects from X X X

the staking system to the GIS system. This method is defined by

the buss WSDL.

Table 2
Optional MultiSpeak Methods
Method Name Importance to User Supported Supported Verified
by Server' by Client’ Inter-
(GIS and EA) (STK) operable3
GetDomainMembers Requests the members of a given domain (type of fixed X
information, such as all of the counties in the database).
Requests the domains (lists of fixed information, such as the X

GetDomainNames

counties served, or the acceptable status codes for this
installation).

GetFeatureTypes

This method will retrieve a list of material types from the GIS.

Page 3 of 33

MILSOFT '~

Utility Solutions 3

GeoDigltal

A BETTER POINT OF VIEW

GetModifiedFeatures

This method will retrieve a list of features from the GIS that
have changed since a previous version.

GetFeaturesByBounds This method will retrieve a list of features from the GIS that
are contained within a certain bounds (envelope).
GetFeaturesByType This method will retrieve a list of features from the GIS that

are of a certain feature type.

GetFeaturesByTypeAndBounds

This method will retrieve a list of features from the GIS that
are of a certain feature type and within a certain bounds.

GetFeatureByTypeAndObjectID

This method will retrieve a feature from the GIS that has a
certain objectID.

GetAllBackgroundGraphics

Returns all background graphics. The calling parameter
lastReceived is included so that large sets of data can be
returned in manageable blocks. lastReceived should carry an
empty string the first time in a session that this method is
invoked. When multiple calls to this method are required to
obtain all of the data, the lastReceived should carry in
subsequent calls the objectID of the data instance noted by
the server as being the lastSent. If the sessionlD parameter is
set in the message header, then the server shall respond as if
it were being asked for a GetModifiedXXX since that sessionID;
if the sessionID is not included in the method call, then all
instances of the object shall be returned in response to the
call.

GetModifiedBackgroundGraphics

Returns all background graphics that have been modified
since the previous session identified. The calling parameter
previousSessionID should carry the session identifier for the
last session of data that the client has successfully received.
The calling parameter lastReceived is included so that large
sets of data can be returned in manageable blocks.
lastReceived should carry an empty string the first timein a
session that this method is invoked. When multiple calls to
this method are required to obtain all of the data, the
lastReceived should carry in subsequent calls the objectID of
the data instance noted by the server as being the lastSent.

GetAllSpatialFeatureGroups

Returns all spatial features groups. Spatial feature groups are
groups of spatially related features, such as all of the features
attached to a pole. This is an alternative means to send GIS
data, rather than sending individual features by type. The
calling parameter lastReceived is included so that large sets of

Page 4 of 33

MILSOFT '~

Utility Solutions \

GeoDigltal

A BETTER POINT OF VIEW

data can be returned in manageable blocks. lastReceived
should carry an empty string the first time in a session that
this method is invoked. When multiple calls to this method
are required to obtain all of the data, the lastReceived should
carry in subsequent calls the objectID of the data instance
noted by the server as being the lastSent.If the sessionID
parameter is set in the message header, then the server shall
respond as if it were being asked for a GetModifiedXXX since
that sessionlID; if the sessionID is not included in the method
call, then all instances of the object shall be returned in
response to the call.

GetModifiedSpatialFeatureGroups

Returns all spatial features groups that have been modified
since the session identified by the sessionID parameter. The
calling parameter previousSessionlID should carry the session
identifier for the last session of data that the client has
successfully received. Spatial feature groups are groups of
spatially related features, such as all of the features attached
to a pole. This is an alternative means to send GIS data, rather
than sending individual features by type. The calling
parameter lastReceived is included so that large sets of data
can be returned in manageable blocks. lastReceived should
carry an empty string the first time in a session that this
method is invoked. When multiple calls to this method are
required to obtain all of the data, the lastReceived should
carry in subsequent calls the objectID of the data instance
noted by the server as being the lastSent.

GetBackgroundGraphicsByBounds

Returns background graphics within a rectangular bounding
box. The calling parameter lastReceived is included so that
large sets of data can be returned in manageable blocks.
lastReceived should carry an empty string the first time in a
session that this method is invoked. When multiple calls to
this method are required to obtain all of the data, the
lastReceived should carry in subsequent calls the objectID of
the data instance noted by the server as being the lastSent.

GetSpatialFeatureGroupsByBounds

Returns spatial feature groups within a rectangular bounding
box. Spatial feature groups are groups of spatially related
features, such as all of the features attached to a pole. This is
an alternative means to send GIS data, rather than sending
individual features by type. The calling parameter lastReceived

Page 5 of 33

MILSOFT '~

Utility Solutions \

GeoDigltal

A BETTER POINT OF VIEW

is included so that large sets of data can be returned in
manageable blocks. lastReceived should carry an empty string
the first time in a session that this method is invoked. When
multiple calls to this method are required to obtain all of the
data, the lastReceived should carry in subsequent calls the
objectlID of the data instance noted by the server as being the
lastSent.

GetSpatialFeatureGroupByObjectID

Returns a specific spatial feature group by objectID.

ModifyGISFeatureData

Allow requester to modify GIS data for any GIS feature. GIS
returns information on failed transactions by returning an
array of errorObjects.

MaterialManagementAssemblyNotification

This method will send changes in a
MaterialManagementAssembly in the Staking System to the
GIS System.

1) Supported by Server means that the server has demonstrated in some interoperability test (not necessarily with this client) that it can support the method.
2) Supported by Client means that the client has demonstrated in some interoperability test (not necessarily with this server) that it can call the method.
3) Verified Interoperable means that both the client and server have demonstrated in this interoperability test that they can usefully transfer data using this method.

Page 6 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

GeoDigital Configuration Considerations:

When StakeOut is creating a MultiSpeak WorkOrder object to pass to GIS, it is essentially converting a
Station & Assembly-based model into a Feature-based model. The assemblies applied to the design
work order are typically defined in the accounting system and sent to StakeOut to use within a design
work order. StakeOut must be configured to properly define how those assemblies that came from the
accounting system should be treated physically, spatially, and electrically so that they can be properly
used for designs as well as properly modeled within a MultiSpeak WorkOrder object to pass to a GIS/EA
system.

WorkStudio to GIS Preferences

e “Enforce Field Size Limits to Schema Defined Sizes” can be checked or unchecked.

e Overhead Line Direction must be set to “From Station to Headspan Station” for proper import
into WindMilMap.

e “Export All Station Data to MultiSpeak Extensions” must be checked if user-defined data needs
to be sent from StakeOut on station objects. If not, leaving it unchecked will create a smaller
MultiSpeak payload.

e “Export All Unit Data to MultiSpeak Extensions” must be checked if user-defined data needs to
be sent from StakeOut on assembly objects. If not, leaving it unchecked will create a smaller
MultiSpeak payload.

Web Services Preferences

The Default MultiSpeak Web Services Client Connection to GIS must have the following values set:
Host — This is the full URL to the Milsoft Integration Server (MIS) such as
“http://192.168.1.100:83/soap/EA_Server”.
UserID — This is a username defined by the Milsoft Integration Server environment to
authenticate communicating with the MIS.
Password — This is the password defined by the Milsoft Integration Server environment to
authenticate communicating with the MIS.

The Work Order Export... button will allow the administrator the ability to configure
transforming specific fields of data as the StakeOut design job is transformed into the
MultiSpeak WorkOrder object. Clicking this button will provide field aliasing options and field
scripting options. By default, these do not need to be configured unless advanced data
transformation is needed on a case-by-case basis.

MultiSpeak Nouns Associated to Assemblies

Each MaterialManagementAssembly that is received from the accounting system must be configured in
StakeOut in order to be used. At a minimum, setting the UnitType of the unit will define how that unit
can be used, and thus, its data model and behavior. For example, a pole unit behaves very differently
than a conductor unit. Within StakeOut, any number of UnitTypes can be defined based on the
preferences of the utility, but each UnitType that is defined will have an associated UnitClass. The
UnitClass defines the core behavior for each of the units of the same unit class.

Each UnitType that is defined has this associated UnitClass, but it also may have certain behavior

options that can be turned on, turned off, or configured for all the units of the same UnitType. For
example, StakeOut can have a PrimaryPole UnitType and a SecondaryPole UnitType. Both of these

Page 7 of 33

MILSOFT '~

Utility Solutions \

GooDigital

& BETTER POINT OF VIEW

UnitTypes use the same UnitClass called “TPoleUnit”, but the SecondaryPole units may be configured
to have a different map symbol than the PrimaryPole.

StakeOut must be configured to define which MultiSpeak objects (nouns) the units are to be exported as
when applied into a MultiSpeak WorkOrder object that is being sent to a GIS or FA system. Some
UnitClasses within StakeOut have one and only one association to a MultiSpeak noun. For example, the
TPoleUnit class in StakeOut can only be considered a MultiSpeak Pole object.

However, other UnitClasses within StakeOut can be used to model many different MultiSpeak nouns.
Also, one UnitType defined in StakeOut can be used to model many different MultiSpeak nouns. For
this reason, all units that are in the StakeOut unit database can be directly assigned an associated
MultiSpeak noun type. Further, some MultiSpeak noun types are not fully specific and need to have an
additional sub-type defined, such as Breaker, Fuse or Recloser in the case of the

OvercurrentDeviceBank.

The following is a list of the possible MultiSpeak nouns that can be configured in StakeOut to send to a
GIS system. These associations need to be set in the Units Configuration within StakeOut, under the

MultiSpeak preferences.

MultiSpeak Noun StakeOut Supported Milsoft Supported
(Auto-Association Element Types
by UnitClass or
Manually Configured)
capacitorBank Manual — TconstructionUnit* Capacitor
overcurrentDeviceBank Manual - TConstructionUnit Overcurrent Device
measurementDevice Manual - TConstructionUnit Marker

meter

Manual - TConstructionUnit

Updates the meter number on a
Consumer

outageDetectionDevice Manual - TConstructionUnit N/A
switchDeviceBank Manual - TConstructionUnit Switch
primaryCabinet Manual - TConstructionUnit SwitchGear
regulatorBank Manual — TconstructionUnit? Regulator
transformerBank Auto - TransformerUnit Transformer Bank
servicelocation Manual - TConstructionUnit Consumer

riser Manual - TConstructionUnit Assembly

pole Auto - TPoleUnit Map point Pole
streetlLight Manual - TConstructionUnit Map point Street Light
surfaceStructure Manual - TConstructionUnit Assembly
secondaryJunctionBox Manual - TConstructionUnit Assembly
substation Not Supported Source
powerSystemDevice Manual - TConstructionUnit N/A

ohPrimarylLine

Auto - TConductorUnit
(based on UnitType’s Kind=Primary &
Construction=0verhead)

Overhead Line

ugPrimaryline

Auto - TConductorUnit
(based on UnitType’s Kind=Primary &
Construction=Underground)

Underground Line

Page 8 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

ohSecondaryline Auto - TConductorUnit Overhead Line
(based on UnitType’s Kind=Secondary
& Construction=0verhead)

ugSecondaryline Auto - TConductorUnit Underground Line
(based on UnitType’s Kind=Secondary
& Construction=Underground)

1. Capacitor Banks can be modeled in StakeOut but the embedded Capacitor objects cannot.
2. Regulator Banks can be modeled in StakeOut but the embedded Regulator objects cannot.

Geometry Considerations
Both WorkStudio and Milsoft must be using the same defined coordinate system.

The Direction of conductor geometry is important to Milsoft and thus the Overhead Line Direction
preference in StakeOut must be set to “From Station to Headspan Station”.

Bulges in the curved polyline segments can be modeled in StakeOut for any polyline object, such as
underground secondary and underground primary conductors. These bulges represent a curving factor
from one point of a line segment to the previous point of the line segment. WorkStudio will export
these bulge factors but Milsoft will ignore them. The net result is that the line segment will be straight
instead of curved.

Within StakeOut, the designer has the ability to draft some objects, while other objects are
automatically assigned geometry, given the parent object that owns it (such as a transformer hanging on
a pole). When geometry can be drafted by the designer, they can choose to snap the end-points of the
geometry to other objects or not. In the case where some geometry is not snapped, oritis drawnina
location that is off from where it should be drawn, it may produce undesirable visualizations in Milsoft
because connectivity takes precedence over geometry.

Electrical Connectivity Considerations

When a workOrder MultiSpeak object is imported into Milsoft, Milsoft is updating its connectivity
model. The connectivity model is section-based, where each section may optionally have a parent-
section and that parent-section defines the section that provides electrical current to the current
section. Milsoft can import MultiSpeak WorkOrder objects that do not have connectivity defined and
will generate corresponding line-section objects that are not connected to any other line-section
objects. StakeOut can generate the parentSection identifiers on each of the objects in the ObjectList
contained within the WorkOrder object as the WorkOrder object is being created to export out of
StakeOut. It does this based on the UnitClasses’ behaviors and the UnitTypes’ configurations. In some
rare cases, there could be more than one possible ParentSection ID that could be automatically assigned
to one of the objects generated by StakeOut. In this case, StakeOut will choose one of them, given the
best-guess logic coded into StakeOut. Where StakeOut incorrectly generates a parent line-section ID,
the end-users in Milsoft will need to change the connectivity to be correct after importing the
WorkOrder.

Page 9 of 33

MiLsoFT (= ey

Milsoft Modeling Rules

Terms

External System - A GIS and or Staking system sending connectivity data to Milsoft. In this case
GeoDigital’s Stakeout.

GUID - Globally Unique Identifier — This is a random computer unique generated identifier. Itis used as
an element ID in Milsoft.

Loose vs. Tight Integration

When the user creates a new circuit element in Milsoft, that element is given a globally unique
identifier (GUID) which Milsoft uses to identify it in our database. The user never sees this GUID.
Instead, the user identifies a circuit element by its human readable element name. The user may
change the name of an element as often as he likes, but he cannot change the element’s GUID. Circuit
element names in Milsoft can be no longer than 25 characters and must be unique in the model. Itis
common for Milsoft users to transfer an entire feeder to a different model, make changes to the
elements on that feeder (including renaming elements), and then transfer the entire feeder back to the
original model. Because element names may be changed by the user, Milsoft must use the GUID to
uniquely represent each element and to properly link elements in the source model to elements
referencing them in the destination model.

An External System interfacing with Milsoft may either use loose or tight integration. Loose integration
means that elements are referenced by their element names. Tight integration means that elements
are referenced by a GUID. If the External system uses tight integration and gives each element a GUID,
Milsoft will persist that GUID in its database. This makes it possible to maintain the link between
elements in Milsoft and elements in the External System even when the user has changed the element
names. MultiSpeak 2 and 3 provide the capability of sending incremental changes rather than a full
dump of the model. However, in order for this to work we must have some way of knowing which
elements in the incremental change packet correspond to which elements in the existing Milsoft model.
If elements are referenced by an unchangeable GUID this is safe; if elements are referenced by a
changeable element name, it becomes unreliable since names can change where GUID’s do not.

If an External System will always update the Milsoft model with a full dump, loose integration is safe to
use. However, if the External System is to take advantage of the speed and flexibility of incremental
updates, tight integration is recommended. A third option would be to use loose integration and to
inform the user that if he changes any element names in Milsoft or his External system, those elements
will not be properly updated between systems.

Page 10 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Resolving Name Collisions

Milsoft will always check to see if an element already exists before deciding how to import it. If an
element in the XML file has a name that does not yet exist in the model, it will always be added to the
model with the given name. However, if the element name already exists in the model, Milsoft will take
one of three different actions. The user decides in advance which action will be taken by selecting one
of the following choices from a combo box on the import dialog:

If a duplicate element name is found...modify the existing element’s data

If this option is selected, Milsoft will apply the data from the element in the XML file to the existing
element in the model. If some of the XML fields are empty, those fields in the model be left unmodified;
they will not be zeroed. This selection is the default and represents the way the user would most likely
expect to the system to work.

If a duplicate element name is found...ignore the new element

This is useful if you are not able to determine during your export which elements have been newly
added. Milsoft can make this determination for you by refusing to import any elements that already
exist in the model and only importing new elements.

If a duplicate element name is found...import but rename the new element

Some External Systems are not capable of insuring the uniqueness of element names. This option allows
them to import a new feeder or set of elements into an existing Milsoft model with the guarantee that
any existing elements that happen to have the same name will not be trampled. Milsoft will
automatically rename duplicates by affixing a “.1” to the name of the new element. If it finds that that
element name is also taken, it will affix a “.2”, and so on until it finds an unused name.

Incremental Updates

Milsoft allows both batch and incremental importing of MultiSpeak XML files as well as real time
updates using MultiSpeak. In most cases, the user desires to import a full dump of the entire circuit
model into Milsoft. However, it is also very useful to be able to import incremental changes to the
model. Suppose the user has only made changes to (or added or deleted) five elements in the GIS
system and would like Milsoft to reflect those changes. It is possible to generate an XML file containing
only those five elements that changed and import them into an existing Milsoft model.

The MultiSpeak XML file used in an incremental update is identical to the file used in a complete dump
except that the documentType attribute of the MultiSpeak tag should be set to incremental rather than
dump. When you set the documentType to incremental, Milsoft will require you to import into an
existing model. In order to create a new model, you must use dump. Also, when dump is used and you
are importing on top of an existing model, Milsoft will ask you whether or not the existing model should
be overwritten. If you choose to overwrite the existing model, the old model will be discarded and the

Page 11 of 33

MiLsoFT (= ey

elements in the XML file will be imported as a full dump. If you choose not to overwrite the existing
model, Milsoft will perform an incremental update and treat the elements in the XML file as
modifications to the existing model. On the other hand, when incremental is used, you are not asked
whether or not you would like to overwrite the existing model. It is just assumed that the exported
elements should be treated as modifications to the existing model. So, you can still do incremental
updates even if the document type is set to dump, but by using the incremental keyword you can avoid
the possibility of accidentally replacing your entire model with just the incremental changes.

Every XML element derived from mspObject has a verb attribute that specifies how the importing
system should handle it in the case of an incremental update. If you wish to inform Milsoft that a
certain element should be deleted from the model, set the verb attribute to Delete. Otherwise, set the
attribute to New or Change. Ultimately, Milsoft will decide for itself whether an element is new or
changed, so right now Milsoft makes no distinction between these two keywords. However, we may
find a reason in the future to make use of this distinction. So, if you are able to determine whether an
element has been newly added since the last export to Milsoft, go ahead and set the verb to New.

It is up you, the exporter, to remember what element changes you have sent to Milsoft so that you can
determine which elements to send in the next incremental update XML file and what their verbs should
be.

Page 12 of 33

MiLsoFT (= ey

ObjectID vs. SectionID

Milsoft can import all MultiSpeak nouns which are derived from mspConnectivityPoint and
mspConnectivityLine. Milsoft supports the sectional model, but does not support the nodal model.
Therefore, all nouns imported by Milsoft must have an objectID, a sectionlID, and a parentSectionID as
described by the MultiSpeak 3 XML schema. The contents of these three items differ depending on
whether loose or tight integration is being used.

If tight integration is desired (referencing by GUID)...
... the objectID attribute should be the GUID representing this circuit element.
... the sectionID tag should contain the (human readable) circuit element name.

... the objectID attribute of the parentSectionID tag should be the GUID representing the
element’s parent.

If loose integration is desired (referencing by element name)...
... the objectID attribute should be the (human readable) circuit element name.
... the sectionID tag should also contain the circuit element name.

... the name attribute of the parentSectionID tag should be the circuit element name of the

element’s parent.

Element Connectivity

The connectivity of elements in a Milsoft circuit model is based entirely on the direction of
current flow through the system. If current flows from element A to element B then element A
is said to be the parent of element B. Throughout this document the notation: A < B will
mean “Ais the parent of B”. Substations (and elements that are disconnected from the circuit)
have no parent, but it is customary to use “ROOT” as the parent name when none exists. Also,
the Milsoft model is assumed to be a tree, which means that each element has only one parent
but each element can have many children. (Multi-parent nodes are the one exception to this
rule.)

Notice that, unlike in a nodal model, the parent-child linkage of the circuit elements reverses
when a backfeed operation is performed because the direction of current flow has changed.
Consider the following model consisting of two sources and some overhead lines.

SRC1 € OH1 € OH2 OH3 - SRC2

Suppose the user disconnects OH1 from SRC1 and backfeeds OH2 so that all three overhead
elements are fed from from SRC2. WindMil would change the parent-child linkages to:

SRC1 OH1 - OH2 - OH3 - SRC2

Page 13 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Phasing Rules

It is important to export the phaseCode for every element. If Milsoft finds an element with no
phaseCode it will import the element and make an educated guess about its phasing, usually
setting it to the phasing of its parent. The general rule in Milsoft is that an element may not
have any phases that its parent does not have. For instance, it is illegal to parent an ABC
consumer to an AB transformer. The only exceptions to this general rule are certain types of
transformers (like Open Y-D or Y-D One) which can have more phases than their parent. Milsoft
will automatically correct any phasing errors it detects during the import, so it will never make a
model with illegal phasing. The warnings log will contain a report of all rephased elements after
the import finishes.

Equipment Names

Some tags in the MultiSpeak XML are meant to contain the names of equipment. For instance
the conductorType tag in the conductorlList for ohPrimarylLine should contain the name of the
conductor on a particular phase of that overhead line element. Defining the electrical
properties of the various pieces of equipment is the responsibility of the engineer using Milsoft
and is not expected of a GIS system. However, it is important to know that these equipment
names are not simply for display purposes in Milsoft. They actually provide a link to a piece of
equipment with that name in Milsoft’s equipment database. So, while it might seem like a
good idea to change “4_ACSR” to “4 ACSR” in a GIS system, such a change would break the
equipment links in the engineering model until the Milsoft user reassigned all the affected
equipment.

When an element is encountered during the import which references equipment that does not
yet exist in the equipment database, the equipment is automatically created in the model’s
equipment database. However, the newly created equipment has no electrical properties
defined, so the Milsoft user must enter the equipment properties manually, import them from
another equipment database, or rename previously defined equipment to match the
equipment name maintained by the GIS system.

The equipment name can be no more than 20 characters in length. If it is longer than 20
characters, Milsoft will truncate it before searching the equipment database for that
equipment.

Multi-parent nodes

MultiSpeak allows multiple parentSectionIDs for each element. This means that a circuit
element can have up to three different parents at the same time. This is useful in Milsoft for
tying together three single-phase taps to form a three-phase line. A multi-parent situation is
modeled in Milsoft using a multi-parent node. Multi-parent nodes are the only entities in
Milsoft that are allowed to have more than one parent. For instance, if three single-phase
underground lines must come together to form a three-phase underground line, a multi-parent
node must exist at that junction.

Page 14 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

In MultiSpeak 1.1, the multi-parent node had to be explicitly modeled. In MultiSpeak 2 and
later, however, it is only necessary to set multiple parentSectionlIDs for the downline element
being fed by multiple parents. Milsoft will insert the multi-parent node automatically during
the import process.

It is important to note that multi-parent nodes should be used with discretion. The only
appropriate usage of a multi-parent node in Milsoft is to bring single-phase taps together to
parent a multi-phase line. While it might be tempting to use multi-parent nodes for other
clever purposes, such as tying together three single-phase overcurrent devices, regulators, or
transformers, you should not do this. Milsoft provides a way to model each of these without
using multi-parent nodes.

Map Points

Everything Milsoft draws on the screen is called a feature. A feature can be either a circuit
element or a map point. Circuit elements are features that have electrical connectivity
(overhead lines, transformers, overcurrent devices, etc...). Map points are features that have
no electrical connectivity (poles, pads, pedestals, junction boxes, etc...). For historical reasons,
if you want to export a map point to Milsoft you can use either of these MultiSpeak objects:
pole or genericPointFeature. Milsoft makes no distinction between the two and they are
imported identically.

Only the following fields from the pole or genericPointFeature are used by Milsoft:

objectiD

The objectID identifies the map point in the circuit model. The objectID may contain either a
GUID (which uniquely represents the map point in the circuit model) or it may contain the
name of the map point. (Map point names may not exceed 32 characters.)

If the objectlID is a valid GUID, then the map point name is read from the facility/D tag instead.
If a map point with the same GUID already exists in the circuit model, that map point will be
overwritten with the newly-imported name and map point data. (See the discussion of Loose
vs. Tight Integration earlier in this document.)

If the objectID is not a valid GUID (which means it will be treated as a map point name) then if a
map point with the same name already exists in the circuit model, it will be overwritten with
the newly-imported map point data.

If the objectID is left blank, and a map point of the same type already exists at the exact

location specified by the mapLocation tag, that map point will be overwritten with the newly-
imported map point data.

Page 15 of 33

MiLsoFT (= ey

facilitylD

If the objectID tag contains a GUID, facilityID is used to specify the human-readable name of the
map point. If you are using loose integration, the map point name should go in the objectID
field instead. The map point name is read from facilitylD by default, but this is configurable in
Milsoft’s import options.

poleUse or featureType or extensions/structureType
This tag contains the type of the map point. The map point type can be one of the following
strings:

o Pole

. Tower

. Pad

o Pedestal

. Junction Box

) Enclosure

J Vault

o PullBox

. Foreign Structure
o Marker

Two map points of the same type may not have the same map point name. However, a map
point may have the same name as a circuit element or a map point of a different type.

The XML tag that we pull the map point type from is configurable by the user in the import
options. Milsoft will look for the map point in the following places (in order) until it finds
something:

1) Whatever XML tag the user entered in the “Map Point Type” field on the “pole” tab
of the “MultiSpeak Field Mappings” page of the import wizard. This page only appears
when the user chooses the “Explicitly map MultiSpeak XML tags” option.

2) The extensions/structureType tag of a pole or genericPointFeature.

3) The poleUse tag (a valid child of pole in the MultiSpeak XML schema)

4) The featureType tag (a valid child of genericPointFeature)

5) If no map point type is found in any of these places, the map point type defaults to
“Pole”.

mapLocation
The X,Y location of the map point. This location is transformed to the appropriate coordinate

system in the same way the coordinates of the circuit elements are transformed.

If the map point already exists in the model and it shares an endpoint or mid-point with a line
element, that point of the line will be moved to the new location of this map point. This

Page 16 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

behavior is configurable with the import option called “Move attached line if import moves
map point”.

There is another import option that will snap existing lines to a map point if the line is a certain
configurable distance away from the map point.

Assemblies

Map points in Milsoft can have a list of assemblies associated with them. Circuit elements
cannot. The assembly list on a map point represents the various pieces of physical equipment
that are connected to that map point. Some of these pieces of equipment (transformers,
capacitor banks, etc.) will represent circuit elements in the Milsoft circuit model. Other pieces
of equipment (guys, anchors, pole top assemblies, etc.) are not represented anywhere else in
the Milsoft circuit model; they exist only as assemblies attached to a map point.

In order to eliminate duplication of data, Milsoft is very careful to make a distinction between
element assemblies and non-element assemblies. An element assembly is an assembly that
also exists as a circuit element in the model). A non-element assembly is an assembly that does
not correspond to any Milsoft circuit element.

Milsoft imports and stores non-element assemblies on the map points they are associated with.
The Milsoft user can use the Map Point Editor to examine and edit the various assemblies on
that map point.

Milsoft ignores element assemblies during the import unless those element assemblies are
marked for retirement. If an element assembly is marked for retirement in the import, the
corresponding circuit element will be deleted.

Currently, the only way to import assemblies via MultiSpeak is to import them as part of a work

order. There is no other way in MultiSpeak to directly import the assemblies associated with a
map point. If you need to do this you should use the .ASM import instead.

Page 17 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Importing Work Orders

The MultiSpeak XML schema describes a workOrder tag, which Milsoft can use to import work
orders from a staking system. The workOrder tag can appear in a MultiSpeak XML document as
a first-level child of the MultiSpeak tag. When the batch import is used this way, it is typically
manually imported into Milsoft using WindMil’s import dialog. The workOrder tag may also be
sent in a WorkOrderChangeNotification, using the web services interface. Milsoft will import
the work order the same way, regardless of how it receives it.

When a work order is imported, a new project will always be created in Milsoft’s project
manager. This new project gets its name from the woNumber tag in the work order. After the
import is finished, this project will contain a complete list of the modeling operations that were
performed by importing the work order. By default, this new project will appear in a shared
folder in the Project Manager named From Staking Note: This is configurable in the import
settings of the Milsoft Integration Server.

If a project with that name (woNumber) already exists and it hasn’t been posted yet, the
previous contents of the project will be replaced by the current import. If a project with that
name has already been posted (or for some other reason is not editable by the Milsoft
Integration Server), a numeric suffix (woNumber.1, woNumber.2, etc.) will be affixed to the
work order name.

Milsoft recognizes only these children of the workOrder tag:

woNumber: Used as the name of the project the work order is imported into.

jobDescr: Imported into the description field of the newly-created project.

stationList: A list of the stations in the work order, described in more detail below.
extensionsList: Milsoft currently supports one MultiSpeak extension to the workOrder tag. The

stakingSheetUrl extension is used to specify the URL of a staking sheet that is associated with
this work order.

Page 18 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Here is an example of a work order tag.

<workOrder>
<woNumber>12345</woNumber>
<jobDescr>A test work order</jobDescr>
<extensionsList>
<extensionsltem>
<extName>stakingSheetUrl</extName>
<extValue>http://StakingServer:80/Job-12345.pdf</extValue>
</extensionsltem>
</extensionsList>
<stationList>
... A sequence of station tags ...
(See SmallSample.xml for a more detailed example.)
</stationList>
</workOrder>

Stations
Each workOrder contains one or more station objects in a stationList. Milsoft imports the
following tags from each station object:

objectList

The object list contains a list of circuit elements or map points to be imported into the circuit
model. The portion of this document entitled “Milsoft Circuit Element Types” describes
different types of objects Milsoft is capable of importing. The very same routines are used to
import these elements from a work order as if they had been imported directly from a GIS
import, so all the information in this document about importing these element types is
applicable for a work order import as well.

Milsoft can only associate assemblies with map points, not with circuit elements. So, in order
to properly import any non-element assemblies in the assemblyList, there needs to be at least
one map point in the objectList to attach them to. All the assemblies in the assemblyList will be
associated with one map point (pole or genericPointFeature) in the objectList. If there are
multiple map points in the objectList we will use the last one.

objectiD

The objectID of the station is usually ignored. However, if there are no map points in the
objectList, we will search for an existing map point whose GUID matches the object/D of the
station. If such a map point exists in the model, all of the assemblies in this station’s
assemblyList will be associated with that map point.

Page 19 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

mapLlocation

The mapLlocation of the station is usually ignored. However, if any of the map points in the
objectList have a missing coordinate, those map points will be placed at the location specified
by the mapLocation of the station.

assemblyList
The assembly list may contain a list of element assemblies and non-element assemblies. For
each assembly in the list, the following tags are recognized.

e objectID — If a GUID objectID is provided for the assembly, Milsoft will assign that GUID to the
assembly when it creates it. That GUID will then appear in any future exports of the
assemblies. If no objectlD is provided for the assembly, Milsoft will create one.

e featurelD — If an assembly has a featurelD tag containing the GUID of a circuit element or map
point, that assembly will be treated as an element assembly. This means that it will not
appear in the list of assemblies in the Map Point editor. If an element assembly is marked as
being retired (unitActn="R’), then the circuit element that this assembly is associated with will
be deleted by the import.

e unitCode — This is the human-readable name of the assembly (e.g. 35-5 or E-105). It is used to
look up the appropriate assembly equipment in Milsoft’s equipment database (EQDB). If no
assembly with this name already exists in the EQDB, it will be automatically created during the
import.

e unijtActn — This may contain a value of either C, E, or R.
o C=Construction. Specifies that this assembly was newly added.
o E = Existing. Specifies that this assembly already existed.
o R=Retired. Specifies that his assembly should be removed.

Note: Milsoft does not support incremental changes to assembly lists. If an assembly list is
provided for a map point, it will always replace the existing assembly list on that map point.
So, the C and E unitActn codes are treated the same by Milsoft. We make no distinction
between new and existing assemblies. If the unitActn is R (Retired), the assembly is ignored
unless it is an element assembly (has a featurelD). If the assembly to be retired has a
featurelD, Milsoft will delete the associated circuit element from the circuit model.

Note: In order to abide by the MultiSpeak specification, distance, angle, comments, and
damaged should be children of the extensions tag on assembly. However, the Milsoft importer
will still import these tags correctly even if they are direct children of assembly.

Page 20 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Milsoft Circuit Element Types

Milsoft can import all MultiSpeak nouns which are derived from mspConnectivityPoint and
mspConnectivityLine. The following list indicates which Milsoft element types are created
when these nouns are imported.

MultiSpeak Noun Milsoft Element Type
ohPrimaryline Overhead
ohSecondaryline Overhead
ugPrimarylLine Underground
ugSecondaryline Underground
fakeNodeSection Node
capacitorBank Capacitor
overcurrentDeviceBank Overcurrent Device
switchDeviceBank Switch
regulatorBank Regulator
transformerBank Transformer
servicelocation Consumer
substation Source

generator Generator

motor Motor

Each of these elements types will be discussed in more detail.

Data Common to All Elements

phaseCode Every element must have a phase code.
gridLocation This appears in the map number field in Milsoft.

Overhead and Underground Elements

Milsoft makes no distinction between primary and secondary lines. To Milsoft, an overhead is
an overhead. Although Milsoft can import ohSecondaryLine and ugSecondaryline, it treats
them exactly as it would a primary line.

There are quite a few tags for every element that Milsoft does not use. Here is a list of the tags
for overhead and underground lines that Milsoft uses.

conductorlist Make sure each conductor in the list has a phase defined.
condN Equipment name of the neutral conductor.

condLength Impedance length of the conductor (in feet).

constr Name of a user-defined construction code in Milsoft.

Page 21 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

load Actual kW demand goes here if it is known.
For other billing load data use the billingAccountLoad noun.

Node Elements

As of Milsoft version 7, consumers are no longer a type of node; consumers are now their own
separate element type. Consumers may still be imported using a fakeNodeSection whose cktLv/
is set to 6, but this is not recommend as of MultiSpeak 2. Instead use the serviceLocation noun.

You may still use fakeNodeSection to create a multi-parent node, but it is not necessary as of
MultiSpeak 2. Now that MultiSpeak allows elements to have more than one parentSectioniD,
Milsoft will automatically insert a multi-parent node when it finds an element with more than
one parentSectionlD.

The fakeNodeSection is no longer necessary for creating a feeder bay as of MultiSpeak 2. In the
past, Milsoft modeled feeder bays as nodes whose circuit level was set to “feeder bay”. Now
Milsoft models feeder bays using overcurrent devices.

The fakeNodeSection is still useful for modeling spot loads, though. Set cktLvl to 4 to specify
that the node is a spot load.

Capacitor Elements

Milsoft uses only the following fields specific to capacitorBank:

connectionCd The choices are enumerated in the MultiSpeak XML schema.
swType The choices are enumerated in the MultiSpeak XML schema.
swStatus The choices are enumerated in the MultiSpeak XML schema.
swOn Value in volts or amps at which this capacitor switches on.
swOff Value in volts or amps at which this capacitor switches off.
cntrCkt The name attribute of this tag contains the name of the circuit

element that will control capacitor switching.
bankKvar Total bank size, in kVAR.
If bankKvar contains a value, Milsoft will divide the kVAR

equally among the existing phases of the capacitor element.

volts Rated voltage of capacitor in kV. Voltage is L-G if capacitor is
Wye connected and L-L if delta connected.

capacitorlList If a capacitorList exists, Milsoft will read and store the kVAR
information for each phase from this list; however, the objectIDs

Page 22 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

of the individual capacitors in the bank are not persisted in

Milsoft. If the GIS system sends an incremental update in which

the objectIDs of the capacitors in the capacitorList have changed,

Milsoft will not know or care. The only reason to use the capacitorlList is
if the capacitor bank contains individual capacitors with different kVAR
ratings. If all kVAR ratings are the same, it is much simpler to place the
total kVAR for the bank in the bankKvar field and let Milsoft distribute the
kVAR equally over the existing phases. The phase field in the capacitor
tags in the capacitorlList should contain only “A”, “B”, or “C”.

Overcurrent Device Elements

Milsoft uses only the following fields specific to overcurrentDeviceBank:

facilitylD Used as an alias name for the device and will appear in Milsoft’s
work environment as the name of the feeder (if this device is a feeder).

isGanged If “true”, Milsoft will enforce the fact that all phases of the
device open and close together.

mspOvercurrentDevicelist Described below

An overcurrent device in Milsoft is actually a bank element, so the user is allowed to specify
overcurrent device equipment for each phase of the bank. The mspOvercurrentDevicelist
should indicate which device equipment each phase of the bank is using. In order to do this it is
important to correctly populate the eaEquipment and phase tags of each device in the list. If a
device in the list has no phase indicated, Milsoft will not use it. The eaEquipment tag should
contain the name of an actual piece of device equipment in Milsoft’s equipment database. If
the specified equipment is not found in the equipment database, Milsoft will automatically
create it. If a new fuse with a linkRtg is found in the device list, Milsoft will set the current
capacity of that fuse in the equipment database when it initially creates the equipment. If the
fuse already exists in the equipment database, however, Milsoft will not modify its current
capacity. The position tag for each device in the list will indicate whether that particular phase
of the bank is open or closed. All other tags for devices in the mspOvercurrentDevicelList that
are not mentioned here are ignored by Milsoft.

It is important to note that the overcurrent device elements themselves have no property to
indicate whether they are a fuse, recloser, circuit breaker, etc... The device type in Milsoft is
determined based on the equipment associated with the element. For example, if the first
existing phase of an overcurrent device contains equipment named “FUSE 20A” which
corresponds to a piece of fuse equipment in Milsoft’s equipment database, then Milsoft will
draw the overcurrent device as a fuse.

Page 23 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Overcurrent devices do not have partner elements in Milsoft; switches are the only elements
with partners. So, the partner tag for the overcurrentDeviceBank is ignored by Milsoft.

As mentioned earlier, overcurrent devices now serve as feeder bays in Milsoft. To specify that
an overcurrent device should serve as a feeder bay, use the feederlList tag under the substation
element. (See the “Source Elements” section of this document.)

For convenience, Milsoft also recognizes the following extension tags for the
overcurrentDeviceBank. Remember that these tags must be children of the extensions tag in
order to validate against the schema.

isFeeder 0 if the device is not a feeder bay, 1 if itis. Defaultis 0.
feederNumber The feeder number associated with this feeder bay.
feederColor An integer representing the feeder’s color. OXOOBBGGRR

Switch Elements

Milsoft uses only the following fields specific to switchDeviceBank:

partner The name or objectID attributes of this tag contain a reference
to the switch’s partner switch. Partners are described below.

mspSwitchDevicelist The mspSwitchDevicelist provides far more flexibility than
Milsoft is capable of representing. The only data in
mspSwitchDevicelist we can use is position, and because Milsoft
does not support independent switch phases, it will just use the first
position tag it encounters in the mspSwitchDevicelist to determine
whether the entire switch is open or closed.

Milsoft currently does not allow the phases of a switch to be opened and closed independently,
however we plan to add this functionality in the future. For now, isGanged is not being used,
but the default will be “true” if we ever do decide to use it.

Milsoft models a switch as two elements with different names but which are considered
“partners” of one another. This representation allows Milsoft to handle the tricky case of an
open tie switch in which one switch is actually on two different feeders. There are basically
three possible configurations of a switch, and it will be helpful to understand how Milsoft
models each of them. In the following examples OH1 and OH2 are overhead lines, SW-A and
SW-B are the two partners of a switch, and SRC1 and SRC2 are substations. Milsoft models the
three different switch configurations as follows:

Configuration 1: A closed switch on a single feeder.

Page 24 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

SRC1 € OH1 € SW-A & SW-B €& OH2

Notice that the downline partner of the switch, SW-B, is parented to SW-A. Although SW-A and
SW-B are partners of the same switch, SW-A is also the parent of SW-B because current is
flowing through the closed switch (from SW-A to SW-B).

Configuration 2: An open switch on a single feeder.
SRC1 € OH1 € SW-A SW-B < OH2

Notice that SW-B has no parent. The switch is open, so SW-B and all elements downline from it
are not powered (or disconnected). Opening the switch actually changes the circuit's linkage by
removing the parent link between the downline and upline partners of the switch.

Configuration 3: An open tie switch (spanning two different feeders).
SRC1 € OH1 € SW-A SW-B - OH2 = SRC2

Notice that although SW-A and SW-B are partners of the same switch, they have different
parents. SW-A is parented to OH1 and is considered to be on feeder SRC1. SW-B is parented to
OH2 and is on feeder SRC2. Suppose the user disconnects OH2 from SRC2 and wishes to feed
OH2 from SRC1 instead. Using Milsoft, he would simply close the switch, and Milsoft would
deduce that a backfeed operation should be performed.

To illustrate, disconnecting OH2 from SRC2 would look like:
SRC1 € OH1 € SW-A SW-B—> OH2 SRC2

Then, after closing the tie switch (which performs a backfeed operation), we would see:
SRC1 € OH1 € SW-A &< SW-B € OH2 SRC2

Notice that closing the tie switch changed the direction of current flow through OH2, so the
parent-child linkage of the model had to be updated to reflect that.

While this representation of switches is somewhat complicated, Milsoft’s import routine will do
most of the work for you. For cases 1 and 2 above, it is perfectly acceptable to export a switch
as a single element only. If Milsoft attempts to import a switch that has no partner tag (or an
empty partner tag), it will create the switch partner automatically and correctly reparent any
elements connected to the switch. This is the recommended way to export most switches using
MultiSpeak.

Page 25 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

However, if you need to export an open tie switch, the only way to do so is to export the switch
as two partners. In order to do this, each partner of the switch will need a different name. The
typical naming convention is to append a “-A” and “-B” to the name of the switch, however this
is only a convention and not a naming requirement. Also, the partner tag of each switch must
contain the name of the switch’s partner. Note that it is not necessary for both partners of the
switch to appear together in the XML file. In fact, the two partners do not even need to appear
in the same XML file. It is common for GIS systems to generate a different MultiSpeak XML file
for each feeder, so for open tie switches it is usually convenient to export each partner of the
switch along with the feeder to which it belongs. Of course, each switch partner will need to
know the name of its partner at the time it is exported. This can be tricky for a GIS system to
do. One possible technique is to append the feeder name or feeder number to the name of
each partner of the tie switch so that you can know in advance what the name of the partner
will be.

If, while importing, Milsoft finds a switch with a partner tag, it willimmediately create both the
switch and its partner and give them the appropriate names even if the partner has not yet
been encountered in the XML file. When that switch partner is finally encountered in the XML
file (or in another XML file), Milsoft will detect that that element already exists in the model
and will modify it with the appropriate data. Suppose the two partners of an open tie switch
(SW-A and SW-B) exist in different XML files (Feederl.xml and Feeder2.xml). While importing
Feederl.xml, Milsoft encounters a switch element named SW-A that has a partner tag with a
name attribute of “SW-B”. At this point, Milsoft knows nothing about SW-B other than the fact
that it exists and it is the partner of SW-A. So, the model after importing Feederl.xml might
look something like:

SRC1 € OH1 € SW-A SW-B

Notice that SW-B has no parent at this time; it is just the unconnected partner of an open tie
switch. This is a legal configuration for a switch in Milsoft, so even if Feeder2.xml was never
imported there would be no problem with the model. If the model were to be opened right
now in Milsoft, SW-B would be shown in the work environment under “Disconnected
Elements”.

Now, suppose Feeder2.xml is imported on top of the existing model and the switch element
SW-B is encountered in the XML file. Milsoft will detect that SW-B already exists in the model,
so it will not create a new switch. It will also detect that its partner, SW-A, already exists in the
model, so it will not create it either. What it will do is apply all the new data for SW-B (such as
its parent name) to the existing SW-B element. So, the SW-B element now knows its new
parent is OH2. The model after importing Feeder2.xml would look something like:

SRC1 € OH1 € SW-A SW-B - OH2 - SRC2

These examples of paired switches have only involved open tie switches. Although it is possible
to export other switch configurations as paired switches, it is not recommended. Milsoft takes
many precautions to avoid illegal situations such as parenting an element between the two
partners of a switch. To eliminate the possibility of such errors, it is strongly recommended

Page 26 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

that all non-tie switches be exported as single switch elements, giving Milsoft the responsibility
of adding the switch partner.

Regulator Elements

Milsoft uses only the following fields specific to regulatorBank:

regType An integer (0 or 1) that indicates whether the phases of the regulator bank
work together (0) or function independently (1). A regType tag of 0 only
makes sense for three phase regulators.

ctrlPhase If regType is 0, the ctrIPhase tag indicates which phase (A, B, or C)
controls the regulator.

wdgType An integer (1-10) which represents the regulator’s winding type where:
1=tranForm_E_1
2 =tranForm_E_2
3 =tranForm_E_3
4 =tranForm_E_4
5=tranForm_E_5
6 =tranForm_E_6
7 =tranForm_E_7
8 =tranForm_E_8
9 =tranForm_E_9
10 =tranForm_E_10
These winding definitions can be found in the Electrical Transmission and
Distribution Reference Book in Table 7.

regulatorList Contains descriptions of the regulators on each phase of the bank.

It is important that the phase tag be populated for each regulator in the list. The eqEquipment
tag for each regulator in the list should refer to the name of the appropriate regulator
equipment in Milsoft’s equipment database. Milsoft uses every child tag of regulator except for
kva. If all the eaEquipment tags for each phase contain the same equipment name, Milsoft will
represent this element in the circuit element editor as “1-phase units with all phases same”.
Otherwise, it will be represented in Milsoft as “1-phase units with different settings”.

Page 27 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Transformer Elements

Milsoft uses only the following fields specific to transformerBank:

wdgCode (The transformer winding codes are enumerated in the schema.)

transDescr (The name of the transformer definition in the equipment database)

vinput (Input voltage in kV. In L-L if primary is delta connected.)

vOut (Output voltage in kV. In L-L if secondary is delta connected.)

sourceSideConfig (Source side configuration for Y-D open, D-D open, D-Y open.)

tertVolts (Tertiary voltage in kV.)

tertChild (The objectID attribute should contain the name or GUID of the
transformer’s tertiary child.)

vOutNom (Nominal output voltage in kV.)

vOutNomTertiary (Nominal output voltage of tertiary in kV.)

transformerlList (Contains information about the transformer’s equipment.)

Milsoft models a transformer bank as a single element which references up to three
transformers in its equipment database.

The transDescr tag is deprecated and maintained only for backwards compatibility. Future
implementations should use transformerList instead. If a transformer equipment name is
passed in transDecsr, it will be used as the transformer equipment on all existing phases of the
transformer bank. If the transformerList is also used, the data in the transformerList will be
given precedence and will overwrite any data imported from the transDescr tag.

The transformerList contains a list of transformer tags which represent the individual
transformers in the transformer bank. The following tags under transformer may be used; the
other tags are ignored by Milsoft:

eaEquipment This specifies the name of the transformer in Milsoft’s equipment database that
all of the following data refers to.

phase If phase is ABC, the transformer is imported as a three-phase transformer.
If phase is A,B,or C, the transformer is imported as a single-phase transformer
and is applied to the appropriate phase on the circuit element.

kva kVA of transformer.
impedance Impedance of transformer.
nLLoss No-load losses of transformer.

Page 28 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Consumer Elements

As of MultiSpeak 2, consumers are imported as servicelocation elements.
Milsoft uses only the following fields specific to serviceLocation:

servStatus 0 indicates the consumer is inactive
1 indicates the consumer is active

servType If servType contains an integer, it is mapped to the appropriate
consumer type as follows:

0 = Residential

1 =Small Commercial

2 = Large Commercial

3 = Large Power

4 = Motor Load

5 =Irrigation

6 = Oil and Gas

7 = Traffic Lights

8 = Security and Street Lights
9 = Flat Rate Load

10 = Primary

The servType tag may contain a string instead. If so it must be

one of the strings listed above. If servType contains an invalid

consumer type, the default consumer type will be used. This is
chosen by the user in the Circuit Element Preferences dialog in
WindMil.

Page 29 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

Source Elements

Milsoft uses only the following fields specific to substation:

zMin The name of a ZSM impedance in the equipment database.

zMax The name of a ZSM impedance in the equipment database.

busVolts Bus voltage (in per unit, not volts. For example, 1.05 not 126).

ohGndZz Overhead ground ohms

ugGndZ Underground ground ohms

IdCon Connection (W=wye connected, D=delta connected)

nomVolts Nominal voltage (kV) (in L-G if wye connected, in L-L if delta connected)
IdAlloc “true” if this source is a load allocation control point.

isRegulated “true” if this source is regulated.

Because sources have no parent element, the parentSectionlID should be set to ROOT or some
other name that does not exist in the model.

The feederList is used to specify which overcurrent devices should serve as feeder bays for this
source. There should be one feederObject in the feederList for each feeder bay on the
substation. Using the feederList does not actually cause “feeder bay elements” to be added to
the Milsoft model. The overcurrent devices to serve as feeder bays must be imported
separately (using the overcurrentDeviceBank tag). This list simply designates those overcurrent
devices as feeder bays and adds some feeder specific information to them.

For each feederObject it is important to specify the name and/or objectID of the overcurrent
device using the name and objectID attributes of the ealoc tag. The feederName tag is used to
specify the feeder bay name to be associated with this device. This name will appear in Milsoft
as the “alias” of the device, and it will also appear in Milsoft’s work environment and reports.
You may also specify a feeder number using the feederNo tag. This will appear in Milsoft in the
“Feeder Number” field for the overcurrent device.

Generator Elements
Milsoft uses only the following fields specific to generator:

load Defines the total generator kVA used by the negative load model.
ssDesc The fault impedance at steady state. (Name of ZSM equipment.)
tranDesc The fault impedance at transient. (Name of ZSM equipment.)
stDesc The fault impedance at sub-transient. (Name of ZSM equipment.)

connected “D” = Delta connected,
“W” = Wye connected.

model 0 = Negative Load generator model
1 = unused

Page 30 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

2 =unused
3 = Swing kVAR generator model

The following fields are used only by the swing kVAR generator model:
holdVoltsZ ~ The voltage the generator is to hold (In per unit)

kwOut Generator output (in kW)
kvarLead Maximum leading output (in kVAR)
kvarLag Maximum lagging output (in kVAR)
Motor Elements

Milsoft uses only the following fields specific to motor:

load Used only to obtain the motor load mix.
ssDesc The fault impedance at steady state. (Name of ZSM equipment.)
tranDesc The fault impedance at transient. (Name of ZSM equipment.)
stDesc The fault impedance at sub-transient. (Name of ZSM equipment.)
status 0 = Disconnected

1= Off

2 = Locked rotor
3 = Soft start

4 = Running
hp Rated horsepower
of Power factor at full load (in per unit)
eff Efficiency at full load (in per unit)
IgVolts L-G voltage (in kV)
dropout Motor drops out if % voltage is below this fraction.
nemaTyp Motor NEMA code
0 =None
1=A 10=K
2=8B 11=L
3=C 12=M
4=D 13=N
5=E 14=P
6=F 15=R
7=G 16=S
8=H 17=T
9=J 18=U
limit Motor will not start if % voltage is below this fraction.
sftStTyp 0 = Starting across line

1 = Impedance soft start
2 = Auto transformer start

Page 31 of 33

MiLsoFT (= ey

& BETTER POINT OF VIEW

3 = Capacitor assisted start
4 = Partial winding start
5 = Delta Wye soft start

SftStR For soft start, starting line resistance (real part of impedance)

SftStX For soft start, starting line reactance (imaginary part of impedance)

sftStTap For auto transformer start, at start the motor terminal voltage will be this
fraction of the normal across line starting voltage. (In per unit)

IrPf Locked rotor power factor (In per unit)

IrMult Locked rotor kVA per horsepower.

MultiSpeak Extension Tags

In addition to the tags defined by MultiSpeak, Milsoft can also import and export some
additional data. The following tags, if they are used, must appear in the XML file as child tags of
the extensions tag. Furthermore, MultiSpeak requires the extensions tag to be the first child tag
of an element.

symbolCoord This is used like the coord tag in mapLocation; it contains an X
and a Y tag which represent the location of the element’s symbol
as it appears in Milsoft. It is not necessary to export this from a
GIS, but if you are importing from Milsoft, it might be useful.

note The text of a note associated with this element.

Page 32 of 33

M!yLS§8iI:rI "-'; G@tal

& BETTER POINT OF VIEW

Certified by:

For Milsoft Utility Solutions, Inc.:

oL

Executive Vice President

Name: Luis Malavé Title:
Date: 2/19/2013
For GeoDigital:
Vice President/CTO
Name: Sean Solberg Title:
Date: 2/19/2013

Assertions Verified by:

& A [/bt MultiSpeak Technical Coordinator

Name: Gary McNaughton Title:

NRECA/Cornice Engineering
Testing Agent

Date: 2/19/2013

Disclaimer:
The assertions made in this document are statements of the vendors offering the two products listed above. The Testing Agent
has observed the software performing the tasks described in these vendor assertions.

Neither NRECA, Cornice Engineering, Inc. (MultiSpeak Project Coordinator) acting on behalf of NRECA, makes any warranty nor
guarantee that the software will perform as described in this assertion when installed at any specific utility. Furthermore,
neither NRECA, Cornice Engineering, Inc. makes any warranty nor guarantee that the software described will be suitable for any
specific purpose or need.

As used herein, the word “verify” shall mean an expression of the Testing Agent’s professional opinion to the best of its
information, knowledge and belief, and does not constitute a warranty or guarantee by NRECA or the Testing Agent.

Page 33 of 33

